

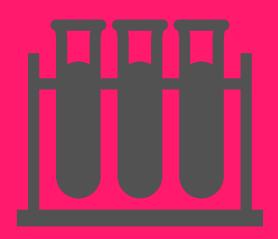
#Biotechnofarm

NORMAS DE LABORATORIO

QUE HACER Y QUE NO HACER EN UN LABORATORIO

NORMAS DE LABORATORIO

QUE HACER


- Recogerse el pelo.
- Trabajar con cuidado.
- ➤ Uso de EPIs: Batas, gafas, guantes, etc.
- ➤ Atender a las instrucciones y ➤ Comer, beber, fumar protocolos que se nos dan.
- ➤ Mantener una correcta higiene.

QUE NO HACER

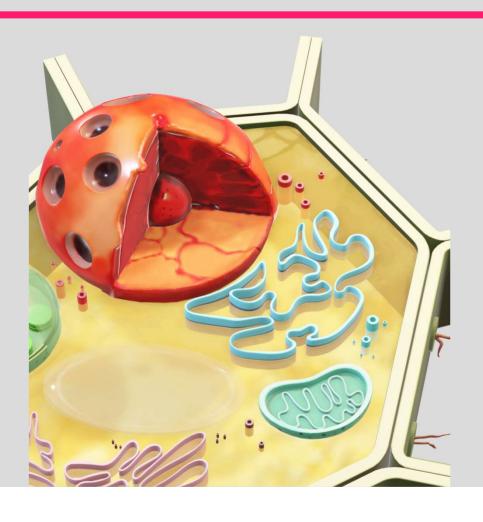
- Llevar puestos anillos, relojes, pulseras, piercings, etc.
- >Tocar los instrumentos que estén funcionando.
- acicalarse/maquillarse en laboratorio.

EXPERIMENTOS A REALIZAR

EXTRACCIÓN DE ADN, OBSERVACIÓN AL MICROSCOPIO E IDENTIFICACIÓN DE GRUPOS SANGUÍNEOS

EXTRACCIÓN ADN

¿DÓNDE ESTÁ EL ADN? ¿CÓMO LLEGAMOS HASTA ÉL? PROTOCOLO EXPERIMENTAL ÁNALISIS DE LOS RESULTADOS



¿DÓNDE ESTÁ EL ADN?

¿CÓMO LLEGAMOS HASTA ÉL?

PROTOCOLO EXPERIMENTAL

- Lisaremos la muestra (vegetal o animal), para romper las paredes y membranas celulares.
- Se dejará incubar 15 minutos, agitando cada 5 minutos.
- Añadiremos la solución salina, necesaria para la correcta precipitación del ADN.
- Nuestra mezcla se filtra y tras ello añadimos el alcohol para la precipitación del ADN.

ÁNALISIS DE LOS RESULTADOS

- ¿Nos ha salido bien a todos la práctica?
- ¿Podríamos ingerir el precipitado de ADN que hemos extraído?
- ¿Para qué puede servir este tipo de técnica?
- ¿Se usarán los mismos materiales en los laboratorios de investigación?
- ¿Veríamos algo si ponemos el precipitado al microscopio?

OBSERVACIÓN AL MICROSCOPIO

¿QUÉ ES UN MICROSCOPIO? ¿QUÉ PODEMOS OBSERVAR? OBSERVACIÓN

¿QUÉ ES UN MICROSCOPIO?

- Es una herramienta que permite observar objetos que son demasiado pequeños para ser observados a simple vista.
- Puede ser de dos tipos:
 - Óptico: contiene dos lentes que permiten aumentar la imagen del objeto.
 - Electrónico: utiliza un haz de electrones para obtener detalles de la muestra y proporcionar una imagen.
- ¿Cuál vamos a usar nosotros?

¿QUÉ PODEMOS OBSERVAR?

- Capacidad de entre 140 y 2000 aumentos.
- Células y estructuras superiores. No podemos ver orgánulos u otras estructuras.
- ¿Qué usarías para ver una mitocondria?
- ¿Podríamos ver el ADN?

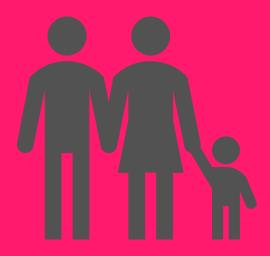
OBSERVACIÓN

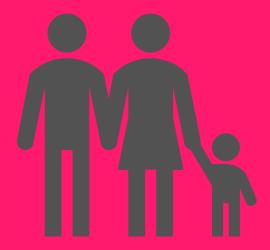
- Células vegetales y animales.
- División celular.
- Estructuras seres pluricelulares.

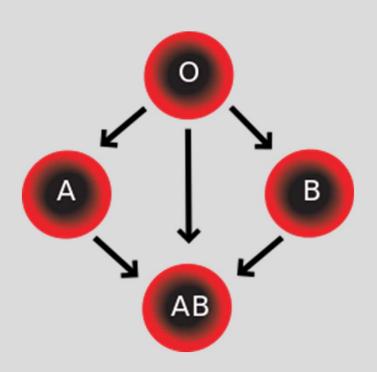
IDENTIFICACIÓN DE GRUPOS SANGUÍNEOS

UN PEQUEÑO PROBLEMA FAMILIAR
GRUPOS SANGUÍNEOS Y LA RELACIÓN ANTÍGENOANTICUERPO

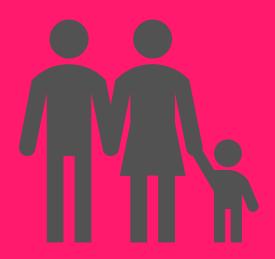
PROTOCOLO EXPERIMENTAL


ANÁLISIS DE RESULTADOS





GRUPOS SANGUÍNEOS Y AG-AB



	Group A	Group B	Group AB	Group O
Red blood cell type		<u> </u>	AB	0
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	P A antigen	† B antigen	A and B antigens	None

PROTOCOLO EXPERIMENTAL

- Se repartirán un porta marcado con las letras A, B y Rh en la parte superior y tres palillos por cada grupo.
- Se echará el mismo tipo de sangre en todas las letras, una sola gota, y a continuación se añadirá una gota de anticuerpo, el correspondiente a cada letra. ¡Evitar el contacto del bote con las gotas!
- Se usarán los palillos para mezclar la sangre y el anticuerpo. ¡No usar la misma punta para dos gotas distintas!
- Al finalizar se observarán los coágulos o no y se determinarán los grupos sanguíneos de los personajes.

ANÁLISIS DE RESULTADOS

AGLUTINACIÓN	JOHN	MATHEW	DAVID	MARY
Aglutina A	+	-	+	-
Aglutina B	-	+	+	-
Aglutina Rh	+	+	+	-
Resultado	A+	B+	AB+	0-

@able_leon
@febiotec
@FEBiotec

#Biotechnofarm